

Large Wind Deployment Strategies Outline

- Energy where we are
- Wind energy environmental benefits
 & issues
- Wind energy economic drivers
- Wind resource assessment example of path forward
- Barriers to 20% wind by 2030
- Wind turbine trends & costs

U.S. Energy by Source

Source: 1850-1949, Energy Perspectives: A Presentation of Major Energy and Energy-Related Data, U.S. Department of the Interior, 1975; 1950-1996, Annual Energy Review 1996, Table 1.3. Note: Between 1950 and 1990, there was no reporting of non-utility-use of renewables.

Humanity's Top Ten Problems for next 50 years

- ENERGY
- 2. WATER
- 3. FOOD
- ENVIRONMENT
- 5. POVERTY
- 6. TERRORISM & WAR
- 7. DISEASE
- 8. EDUCATION
- 9. DEMOCRACY
- 10. POPULATION

2003 6.3 Billion People 2050 9-10 Billion People

Source: Nobel laureate, Richard Smalley

Abundance of fossil fuels is not a blessing, it is a problem.

The Future of Energy

Wind – Environmental Benefits

Emissions reductions vs coal electricity

20,000MW – offsets

- •~24 million tons of coal electricity
- equivalent to 80 million barrels of oil

1.5MW wind turbine – offsets

- •1,800tons of CO2
- •14 tons of SO2
- •6 tons of NOx

Source: http://www.nrel.gov/data/pix/Jpegs/00560.jpg

Wind – Environmental Benefits

Water use

1.5MW wind turbine – no water

VS.

Fossil fuel or nuclear

- withdraw 90 million gal
- ~ 1 million gal lost to evaporation

Public supply, 11 percent

Public supply water intake, Bay County, Florida

Irrigation, 34 percent

Gated-pipe flood irrigation, Fremont County, Wyoming

Aquaculture, less than 1 percent

World's largest trout farm, Buhl, Idaho

Mining, less than 1 percent

Domestic, less than 1 percent

Domestic well, Early County, Georgia

Livestock, less than 1 percent

Livestock watering, Rio Arriba County, New Mexico

Industrial, 5 percent

Thermoelectric power, 48 percent

Cooling towers, Burke County, Georgia

Total Water Withdrawals, 2000

Source: USGS Circular 1268, 15 figures, 14 tables (released March 2004 and revised April and May 2004). Available at: http://water.usgs.gov/pubs/circ/2004/circ1268/in dex.html

Author: Ned Guttman/Liz Love-Brotak, NOAA/NESDIS/NCDC http://drought.unl.edu/dm

March 28, 2006

http://drought.unl.edu/dm

http://drought.unl.edu/dm

for forecast statements.

Released Thursday, March 30, 2006 Author: C. Tankerslev/L. Love-Brotak, NOAA/NESDIS/NCDC

U.S. Drought Monitor August 2, 2005 Drought Impact Types: D0 Abnomally Dry → Delineates dominant impacts D1 Drought - Moderate A = Agricultural (crops, pastures, D2 Drought - Severe grasslands) D3 Drought - Extreme H = Hydrological (water) D4 Drought - Exceptional (No type = Both impacts) The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements. Released Thursday, August 4, 2005 Author: Michael Hayes, NDMC

Wind - Environmental Benefits

Embodied energy

Wind energy production time to offset manufacture and construction energy – **4-5 months**

Photovoltaics – 2-3 years

Nuclear and coal – infinite (more embodied energy than they produce)

Wind – Environmental Issues

Avian Impacts of Wind Development

Multi-Stakeholder Wildlife Research

- National Wind Coordinating Committee
- Bat & Wind Energy Cooperative
- Grassland Shrub Steppe Species Collaborative

Jason Horn, Boston University

Drivers for Wind Power

- Declining Wind Costs
- Fuel Price Uncertainty
- Federal and State Policies
- EconomicDevelopment
- Public Support
- Green Power
- Energy Security
- Carbon Risk
- Water Usage

Wind Cost of Energy

Nebraska – Economic Impacts

from 1000 MW of new wind development

Wind energy's economic "ripple effect"

Direct Impacts

Payments to Landowners:

• \$2.7 Million/yr

Local Property Tax Revenue:

• \$3.9 Million/yr

Construction Phase:

- 1,650 new jobs
- \$189 M to local economies

Operational Phase:

- 250 new long-term jobs
- \$21 M/yr to local economies

Indirect & Induced Impacts

Construction Phase:

- 1,650 new jobs
- \$149 M to local economies

Operational Phase:

- 200 local jobs
- \$18 M/yr to local economies

Totals

(construction + 20yrs)

Total economic benefit =

\$1.1 billion

New local jobs during construction = 3,300

New local long-term jobs

= 450

All jobs rounded to the nearest 50 jobs; All values greater than \$10 million are rounded to the nearest million

Construction Phase = 1-2 years Operational Phase = 20+ years

Energy-equivalent New wind vs. New coal in Kansas

Finances and Incentives

- Production Tax Credit
 - 1.9 cents/kWh (escalating) for 10 years equates to around 1.1 cents/kWh reduction in contract price
 - deadline pressure increases costs
 - Causes start/stop cycle
- State and Local tax, etc. can be significant
 - +/- 0.5 cents/kWh impact
- Public Power regulated states becomes part of their base rate and guaranteed profit
- Řenewable Energy Production Incentive
 - annual appropriations problem leads to little impact
- Renewable Portfolio Standards
 - In Place in 22 States + DC

What is Wind Power?

•Wind energy is created by uneven solar heating of the earth

Basic Wind Equation

© 1998 www.WIND*OWER.org

Sun warms land mass + hot air rises + cooler air rushes in to take the place of the vacated air = **Wind**

Wind energy is kinetic energy -- mass and momentum

Derived from K.E. = $\frac{1}{2}$ mv²

$$P = A \times \rho V^3/2$$

- -P = Power of the wind [Watts]
- $-A = Windswept area of rotor (blades) = <math>\pi D/4 = \pi r^2 [m^2]$
- $-\rho = Density of the air [kg/m³] (at sea level at 15°C)$
- V = Velocity of the wind [m/s]

Wind energy is proportional to velocity cubed (V3):

- -If velocity is doubled, power increases by a factor of eight $(2^3 = 8)$.
- -Small differences in average speed cause big differences in energy production.

Wind Resource Assessment

3 sites - all with 6.3 m/s wind at 10m

Average annual wind power:

220 W/m²

285 W/m²

365 W/m²

Varies by over 2 Wind Classes!

The actual data matters

– not just annual wind speed!

Wind Speed and Power Increase with Height Above the Ground

Relative Size of Swept Area

Wind Mapping and Validation

- 50m Validated Maps: 37 completed, KY, KS, TN, OK in '08
- Funding –jointly by DOE/NREL, states, and other organizations
- Other Participating Organizations
 - AWS Truewind: lead modeling consultant
 - Private
 consultants
 proprietary data
 used for NREL
 validation
 - State Offices/Organizations

U.S. Wind Map

Providing Validated Wind Resource Maps at Modern Wind Turbine Hub Heights

Wind resource data at 90-100m tower height revealed a significant increase in wind resources that helped jump start the state's wind industry development.

Shear exponents can vary from 1/7 (0.143) to 0.25+

→ uncertainty in vertical extrapolation from lower heights

Tall tower and remote sensing measurements → high- confidence validated maps and model data for 70-100 m

The shear exponent from a tall tower at Goodland IN is 0.235

→ significantly higher wind resource at 90 m than estimated

Validation of 70-100m maps and mesoscale model data

Tall towers - most reliable source of measurement data from 70 m and higher

Existing tall towers → least-cost validation data

Expensive → unless using existing tall towers

SODAR - detects backscattered sound.

Measure wind higher than tall towers but lower data recovery.

Supplement to tall tower, not replacement.

Potential use ->validation.

LIDAR - detects back-scattered light.

Measure wind higher than tall towers.

Expensive but data quality is high

US Offshore Wind Mapping Objectives

Develop high-resolution validated wind resource maps

- Ocean regions: coast to 50 nautical miles offshore
- Great Lakes: entire surface

Project jointly funded by DOE/NREL, states, other organizations

Priority offshore regions:

- Great Lakes
- Eastern coast areas from Maine to northern Florida
- Western Gulf of Mexico (Texas and Louisiana)

Change is in the Wind

Primary Focus: Creating Viable Options

Metric: Cost of Energy

THEN

NOW

Primary Focus: Enabling Deployment and Production of Wind Energy at Scale (20% Vision)

Metrics: Reliability & Performance 20% Wind Scenario Challenges:

- Transmission and grid integration
- Siting and environmental issues/technology acceptance
- Reliability, standards, test facilities
- Reduce cost and improve performance
- Advanced manufacturing
 — create sustainable, competitive US jobs
- Workforce development

Wind Powering America Strategy

Goal: By 2010, at least 100 MW installed in 30 states

(2000 Goal: 24 states with 20 MW by 2010)

Annual Goals/Actuals		
Year	> 100 MW	Actuals*
< 2005	12	12
2005	16	16
2006	19	16
2007	20	17
2008	22	25
2009	27	30
2010	30	35

^{*}Actuals through 2007

wind Powering America

Thematic Areas

- State Wind Support
 - Wind Working Groups
 - StakeholderOutreach
 - EconomicDevelopment
 - Wind Mapping
- Priority Markets
 - Public Power
 - Native America
 - Distributed (Small) Wind
 - Wind for Schools
 - Federal Loads

State Wind Working Groups*

- Alaska
- Arizona
- Arkansas
- Colorado***
- Connecticut
- Georgia
- Hawaii
- Idaho
- Illinois
- Indiana
- Kansas
- Maine**
- Maryland
- Massachusetts
- Michigan
- Missouri
- Montana
- Nebraska
- Nevada
- New Jersev

- New Mexico
- North Carolina
- North Dakota
- Ohio
- Oklahoma
- Oregon
- Pennsylvania
- Puerto Rico**
- South Dakota
- Tennessee
- Utah
- Virginia
- Washington***
- West Virginia
- Wisconsin
- Wyoming

*Red - Priority State

*Green- Medium Priority State

- ** WWG in formative stage
- *** WWG being reformulated

A New Vision For Wind Energy in the U.S.

State of the Union Address

"...We will invest more in ...
revolutionary and solar wind
technologies"

Advanced Energy Initiative

"Areas with good wind resources have the potential to supply up to 20% of the electricity consumption of the United States."

What does 20% Wind look like?

20% Market Barriers

- National and state policy uncertainty (PTC, RPS, C)
- Mixed stakeholder perspectives and knowledge
- Electricity supply planning based on capacity
- Variable wind output viewed as unreliable
- Incomplete comparative generation assessments
- Mismatch of wind and transmission development timeframes
- Lack of interstate approach to transmission development
- Federal lending all-requirements contracts for G&Ts
- High cost and low turbine availability for community projects
- High cost and permitting challenges of <1 MW turbines

Panel Proposed Framework to Address 20% Wind Priorities

Technology

The Right Turbines

Components

Standards

Testing

- Blades
- Tower
- TowerStorage
- Software

In the Right Places

Siting

- Resources
- Land Use
- Environmental Interface

Systems Integration

Integrated and Operating Effectively in the Electricity System

- Transmission Planning
- Grid Interface
- Storage Use
- Capacity Utilization
- Reliability

Policy

- Mandates
- Incentives

Education

- Federal
- State
- Communities
- School Programs

Workforce

- R&D
- Manufacturing
- Construction
- O&M

NRE-Wind Technical Review Panel, May 1-2, 2008

National Renewable Energy Laboratory

Wind Stakeholders

Wind Energy Supply Curve

Excludes PTC, includes transmission costs to access 10% existing electric transmission capacity within 500 miles of wind resource.

Installed Wind Capacity by 2030

Land Requirements for 20% of the Nations Electricity

Conceptual Map of How to Get There Transmission

Exhibit 1: Conceptual 765 kV backbone system for wind resource integration (edited by AEP).

Growth of Wind Energy Capacity Worldwide

Who is Doing Wind?

U.S. Led the World in 2007 Wind Capacity Additions; Second in Cumulative Capacity

Incremental Capacity	
(2007, MW)	

U.S.	5,329
China	3,287
Spain	3,100
Germany	1,667
India	1,617
France	888
Italy	603
Portugal	434
U.K.	427
Canada	386
Rest of World	2,138
TOTAL	19,876

Cumulative Capacity (end of 2007, MW)

Germany	22,277
U.S.	16,904
Spain	14,714
India	7,845
China	5,875
Denmark	3,088
Italy	2,721
France	2,471
II.K.	2,394
Portugal	2,150
Rest of World	13,591
TOTAL	94,030

Source: BTM Consult; AWEA project database for U.S. capacity.

Percentage of State Electricity from Wind

Wind – not just "How Many Installed MW?" What Percentage of Energy is from Wind?

Note: Figure only includes the 20 countries with the most installed wind capacity at the end of 2007

Major Wind Turbine Suppliers

Source: http://www.awea.org/AWEA_Annual_Rankings_Report.pdf

Major Wind Turbine Suppliers

Largest turbine manufacturers in 2007, by installed capacity (MW) and number of turbines

Turbine Manufacturer	Capacity installed (MW)	Number of turbines
GE Energy	2,340	1,560
Vestas Siemens Gamesa Mitsubishi	953 863 574 356	537 375 287 356

Largest wind turbines installed in the U.S. (rated capacity, in MW)

Source:

http://www.awea.org/AWEA_Annual _Rankings_Report.pdf

Rated capacity (MW)	Turbine manufacturer	Locations installed
3	Vestas	CA, TX
2.5	Clipper, Nordex	IL, IA, MN, NY, WY
2.3	Siemens	MN, ND, OR, TX, WA
2.1	Suzlon	IA, MO, OK
2	Gamesa	CA, IL, IA, MN, PA, TX

These turbines stand 90 meters to 150 meters tall

Major Wind Farm Developers/Owners

Source: http://www.awea.org/AWEA_Annual_Rankings_Report.pdf Laboratory

New Trend – MEGA Wind Farms

- 909MW Shepherd's Flat OR (Caithness Energy)
- 4,000MW Panhandle Mesa Power TX (T. Boone Pickens)
- 735MW Horse Hollow (FPL)
- 5,050MW Titan Project SD (Clipper and BP Energy Alternative) – 3,500MW is contiguous, bundled with 1,550MW
- 3,000MW Briscoe County BTX (Shell WindEnergy and TXU)
- 2,000MW Carbon County WY (Power Company of Wyoming - Anschutz)

Historic Impact of PTC Expiration on Annual Installation of Wind Capacity

Source: AWEA PTC Facts Sheet

Policy Drives Investment

2006 new wind-related manufacturing plants established in:

- Iowa (Clipper Windpower)
- Minnesota (Suzlon)
- Pennsylvania (Gamesa).
- And GE Energy, the most prominent U.S. wind turbine manufacturer, captured 47% of domestic wind turbine sales in 2006

2008

Colorado (Vestas)

Sizes and Applications

Small (≤10 kW)

- Homes
- Farms
- Remote Application

Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (600 kW - 5 MW)

- Central Station Wind Farms
- Distributed Power
- Community Wind

Large Wind Turbines

• Towers: 80-120m

• Rotors: 80-120m

• Weight: 200-400 tons

Issues:

- Roads & bridges
- Cranes

Utility-Scale Wind Power

600 kW - 5 MW wind turbines

- -Typically wind farm application of 10 400 MW
- -Professional maintenance crews -16+ mph (7+ m/s) average wind speed or greater (Class 4+)

1st GE 3.2 MW – land Offshore rated at 3.6MW

BARD Engineering GmbH Germany's first 5-megawatt (MW) near-shore in 2- to 8-meter deep water at Hooksiel off North Sea coast.

Evolution of U.S. Commercial Wind Technology

Carpe Ventem

www.windpoweringamerica.gov

Questions?

For more info:

http://www.nrel.gov/wind/

http://www.eere.energy.gov/windandhydro/windpoweringamerica/

http://www.awea.org/

http://rredc.nrel.gov/wind/pubs/atlas/

Wind and Noise

Turbine at 225-300m setback

Economics of Wind Development

- What 1,000 Megawatts of Wind Brought to Texas
- Taxable value of wind power plants: \$777 million
- Property tax payments to local school districts:
- \$11.6 million in 2002
- Landowner royalty income: \$2.5 million in 2002
- Wind-related jobs: 2,500

Need to "Back-up Wind with Firm Power

Study in Minnesota

1500MW of wind

8MW of backup power needed to augment wind

